skip to main content


Search for: All records

Creators/Authors contains: "Yim, Jinyeong"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Jung, Jae U. (Ed.)
    ABSTRACT Ranaviruses such as frog virus 3 (FV3) are large double-stranded DNA (dsDNA) viruses causing emerging infectious diseases leading to extensive morbidity and mortality of amphibians and other ectothermic vertebrates worldwide. Among the hosts of FV3, some are highly susceptible, whereas others are resistant and asymptomatic carriers that can take part in disseminating the infectious virus. To date, the mechanisms involved in the processes of FV3 viral persistence associated with subclinical infection transitioning to lethal outbreaks remain unknown. Investigation in Xenopus laevis has revealed that in asymptomatic FV3 carrier animals, inflammation induced by heat-killed (HK) Escherichia coli stimulation can provoke the relapse of active infection. Since Toll-like receptors (TLRs) are critical for recognizing microbial molecular patterns, we investigated their possible involvement in inflammation-induced FV3 reactivation. Among the 10 different TLRs screened for changes in expression levels following FV3 infection and HK E. coli stimulation, only TLR5 and TLR22, both of which recognize bacterial products, showed differential expression, and only the TLR5 ligand flagellin was able to induce FV3 reactivation similarly to HK E. coli . Furthermore, only the TLR5 ligand flagellin induced FV3 reactivation in peritoneal macrophages both in vitro and in vivo . These data indicate that the TLR5 signaling pathway can trigger FV3 reactivation and suggest a role of secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. IMPORTANCE This study in the amphibian Xenopus laevis provides new evidence of the critical role of macrophages in the persistence of ranaviruses in a quiescent state as well as in the reactivation of these pathogens into a virulent infection. Among the multiple microbial sensors expressed by macrophages, our data underscore the preponderant involvement of TLR5 stimulation in triggering the reactivation of quiescent FV3 in resident peritoneal macrophages, unveiling a mechanistic connection between the reactivation of persisting ranavirus infection and bacterial coinfection. This suggests a role for secondary bacterial infections or microbiome alterations (stress or pollution) in initiating sudden deadly disease outbreaks in amphibian populations with detectable persistent asymptomatic ranavirus. 
    more » « less
  2. Besides the central role of classical Major Histocompatibility Complex (MHC) class Ia-restricted conventional Cluster of Differentiation 8 (CD8) T cells in antiviral host immune response, the amphibian Xenopus laevis critically rely on MHC class I-like (mhc1b10.1.L or XNC10)-restricted innate-like (i)T cells (iVα6 T cells) to control infection by the ranavirus Frog virus 3 (FV3). To complement and extend our previous reverse genetic studies showing that iVα6 T cells are required for tadpole survival, as well as for timely and effective adult viral clearance, we examined the conditions and kinetics of iVα6 T cell response against FV3. Using a FV3 knock-out (KO) growth-defective mutant, we found that upregulation of the XNC10 restricting class I-like gene and the rapid recruitment of iVα6 T cells depend on detectable viral replication and productive FV3 infection. In addition, by in vivo depletion with XNC10 tetramers, we demonstrated the direct antiviral effector function of iVα6 T cells. Notably, the transitory iV6 T cell defect delayed innate interferon and cytokine gene response, resulting in long-lasting negative inability to control FV3 infection. These findings suggest that in Xenopus and likely other amphibians, an immune surveillance system based on the early activation of iT cells by non-polymorphic MHC class-I like molecules is important for efficient antiviral immune response. 
    more » « less
  3. Indoor robots hold the promise of automatically handling mundane daily tasks, helping to improve access for people with disabilities, and providing on-demand access to remote physical environments. Unfortunately, the ability to understand never-before-seen objects in scenes where new items may be added (e.g., purchased) or altered (e.g., damaged) on a regular basis remains an open challenge for robotics. In this paper, we introduce EURECA, a mixed-initiative system that leverages online crowds of human contributors to help robots robustly identify 3D point cloud segments corresponding to user-referenced objects in near real-time. EURECA allows robots to understand multi-object 3D scenes on-the-fly (in ∼40 seconds) by providing groups of non-expert crowd workers with intelligent tools that can segment objects more quickly (∼70% faster) and more accurately than individuals. More broadly, EURECA introduces the first real-time crowdsourcing tool that addresses the challenge of learning about new objects in real-world settings, creating a new source of data for training robots online, as well as a platform for studying mixed-initiative crowdsourcing workflows for understanding 3D scenes. 
    more » « less